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Abstract 
In this paper, Adomian Decomposition Method with Discretization (ADMD) is applied to solve both linear and Non-linear initial value problems (IVP). Comparison with Adomian Decomposition Method (ADM) is presented. To illustrate the efficiency and accuracy of the method five examples are considered. The result shows that ADMD is more efficient and accurate than ADM.
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1. Introduction
Adomian decomposition method (ADM) [1,6], which was first introduced by the American Physicist George Adomian, has been used to solve effectively and easily a large class of linear and nonlinear ordinary and partial differential equations. This method generates a solution in the form of a series whose terms are determined by a recursive relationship using the Adomian polynomials [3,4]. 
The non-linear problems are solved easily and elegantly without linearizing the problem by using ADM. It also avoids linearization, perturbation and discretization unlike other classical techniques [5, 7]. The main advantage of this method is that it can be applied directly to all types of differential and integral equations, linear or non-linear, homogeneous or inhomogeneous, with constant or variable coefficients. Another important advantage is that, the method is capable of greatly reducing the size of computational work while still maintaining high accuracy of the numerical solution [8]. The decomposition method produced reliable results with fewer iterations, than the Taylor series method and the Runge-Kutta methods [9,10]. The convergence of the ADM has been investigated by a number of authors [2, 11]. 
	In this study, were applied the ADMD to solve the initial value problem of linear and Non-linear second order ODE. ADMD differ from ADM, it divides the interval in to finite number of subinterval and for each subinterval generates a solution in the form of a series whose terms are determined by a recursive relationship using the Adomian polynomials.   The results show that the ADMD is more accurate and suitable solution than the ADM. Also, if the order of the differential equation increase, the solution using ADMD is more better than ADM.
2. Adomian Decomposition Method
Consider the second order ordinary differential



Where,  is a linear operator, R is the remaining linear lower order derivative, N is a nonlinear operator and g is any function.
Integrating (1), yields 



For the initial value problem, where 
The Adomian Decomposition Method assumes that the unknown function y can be expressed by infinite series of the form 


And the ADM assumes that the nonlinear operator N(y) can be decomposed by an infinite series of polynomial given by

 


Where,  are the Adomian’s polynomials defined as Substituting (3) and (4) into equation (2) and using the fact that R is a linear operator we obtain  


Therefore, the formal recurrence algorithm could be defined by



The Adomian polynomial  was first introduced by Adomian himself; it was defined via the general formula


The first few Adomian polynomials are


3. Adomian Decomposition Method with Discretization
 Consider the second order ordinary differential



Where,  is a linear operator, R is the remaining linear lower order derivative, N is a nonlinear operator and g is any function.



ADMD divides the working interval into m equal subinterval with  for .

Integrating (1), on the 



With 

ADMD assumes that the unknown function  can be expressed by infinite series



And the ADMD assumes that the nonlinear operator N(y) can be decomposed by an infinite series of polynomial given by

 


Where,  are the Adomian’s polynomials defined as Substituting (3) and (4) into equation (2) and using the fact that R is a linear operator we obtain  



                           
Therefore, the formal recurrence algorithm could be defined by



The Adomian polynomial  was first introduced by Adomian himself; it was defined via the general formula


The first few Adomian polynomials are


Example 1:- Consider the second order linear ordinary differential equation 



Solution: - The exact solution is 
Using linear operator L equation (17) can be written as

 
Method 1:- Using ADM


Appling  both sides in equation (18) and using initial condition, we get


Upon using the decomposition series for the solution 


This leads to the recursive relation


The first five terms of the series are 


More components in the decomposition series can be calculated to enhance the accuracy of the approximation. By computing five terms of the series solution, we obtain


Method 2:- Using ADMD




We divide the interval [0,1] into m subinterval  for . And Appling both sides in equation (18) and using initial condition, we get


Upon using the decomposition series for the solution in the  


This leads to the recursive relation


Thus, on the first interval taking i=0,


Similarly, for i=1,2,…,m-1



The result of ADM and ADMD are illustrated in Table 1 below with five term of the series at . Clearly ADMD is more accurate than ADM and the accuracy of the ADMD can be increased either by choosing a small step size or by adding more terms of the series solution.
Table 1 Error values for the approximation solution of ADM and ADMD
____________________________________________________________
x              Error ADM                Error ADMD        Error ADMD


                                                   with         with 
____________________________________________________________

0.0           0.0000e+00 	0.0000e+00		0.0000e+00

0.10	          6.9389e-17		6.9389e-17		6.9389e-17

0.20		5.2736e-16		5.2736e-16		2.7756e-17

0.30		4.4464e-14		1.9151e-14		1.5846e-09

0.40		1.0518e-12		4.6074e-14		2.2204e-16

0.50		1.2252e-11		1.4522e-13		5.5511e-16

0.60		9.1098e-11		4.6640e-13		1.6072e-12

0.70		4.9692e-10		6.4748e-13		2.9088e-14

0.80		2.1608e-09		1.5594e-12		1.7764e-15

0.90		7.9026e-09		2.4882e-12		2.6645e-15

1.00		2.5213e-08		3.6633e-12		4.2188e-15
[image: ]


Figure 1. Comparison between exact, ADM and ADMD for 
Example 2:- Consider the Bratu-type initial value problem


Solution: - The exact solutions are 


Using linear operator L equation (17) can be written as


Method 1:- Using ADM


Appling  both sides in equation (18) and using initial condition, we get


Using the ADM assumes y and nonlinear term as infinite series given by






Where,  is Adomian polynomial representation for the nonlinear term , gives


Method 2:- Using ADMD




We divide the interval [0,1] into m subinterval  for . And Appling both sides in equation (20) and using initial condition, we get


Using the decomposition method assumes y and nonlinear term as infinite series, given by


This leads to the recursive relation




Where,  is Adomian polynomial representation for the nonlinear term , gives




The result of ADM and ADMD are illustrated in Table 2 below with five term of the series for. Clearly ADMD is more accurate than ADM and the accuracy of the ADM and ADMD increased for Bratu’s equation if  is small and choosing a small step size or by adding more terms of the series solution.
Table 2 Error values for the approximate solution of ADM and ADMD
_____________________________________________________________

x     Error ADM1    Error ADMD1      Error ADM2    Error ADMD2

           
_____________________________________________________________

0.0	0.0e+00	0.0e+00	            0.0e+00	  	0.0e+00

0.1	1.4e-14	1.4e-14	  	4.4e-13	   	4.4e-13

0.2	1.4e-11	1.4e-11	  	4.5e-10            	4.5e-10

0.3	8.2e-10	3.8e-10	 	2.7e-08	    	1.3e-08

0.4	1.5e-08	9.4e-10	   	4.8e-07             	 3.0e-08

0.5	1.4e-07	1.6e-09	   	4.7e-06	     	5.6e-08
[image: ]


Figure 2. Comparison between exact, ADM and ADMD for 
Where, Log Error is the logarithm value of absolute error.

Example 3:- Consider the non- homogeneous linear differential equation 



Solution: - The exact solution is 


The result of ADM and ADMD are illustrated in Table 3 below with five term of the series at . Clearly ADMD is more accurate than ADM. And in Figure 3 shows the Comparison between ADM and ADMD at .
Table 3 Error values for the approximation solution of ADM and ADMD
__________________________________________________________________
x          Error ADM        Error ADMD for h=0.25          Error ADMD for h=0.1
________________________________________________________________
0.0        0.00e+00		          0.00e+00			0.00e+00
0.1	  0.00e+00		         0.00e+00			0.00e+00
0.2	  2.82e-14		         2.82e-14			4.44e-16
0.3	  1.63e-12		         7.89e-13			6.66e-16
0.4	  2.89e-11		         1.85e-12			2.00e-15
0.5	  2.70e-10		        3.20e-12			3.11e-15
______________________________________________________________________
[image: ]

Figure 3. Comparison between exact, ADM and ADMD for 
Example 4:- Consider the non-linear differential equation 



Solution: - The exact solution is 


The result of ADM and ADMD are illustrated in Table 4 below with five term of the series at . Clearly ADMD is more accurate than ADM. And in Figure 4 shows the Comparison between ADM and ADMD at .
Table 4 Error values for the approximate solution of ADM and ADMD
________________________________________________________
x                                Error ADM                     Error ADMD for h=0.25  
________________________________________________________
0.0				0.00e+00			0.00e+00
0.1				1.56e-10			1.56e-10
0.2				1.16e-07			1.16e-07
0.3				4.86e-06			2.63e-06
0.4				6.25e-05			6.21e-06
0.5				4.20e-04			1.02e-05

[image: ]

Figure 4. Comparison between exact, ADM and ADMD for 
Example 5:- Consider the non- homogeneous linear differential equation 



Solution: - The exact solution is 


The result of ADM and ADMD are illustrated in Table 5 below with five term of the series at . Clearly ADMD is more accurate than ADM. And in Figure 5 shows the Comparison between ADM and ADMD at .
Table 5 Error values for the approximation solution of ADM and ADMD




________________________________________________________________
x     Error ADM                Error ADMD for h=0.25           Error ADMD for h=0.1
________________________________________________________________
0.0		0.00e+00			0.00e+00		  0.00e+00
0.1		1.93e-16			1.93e-16		   1.93e-16
0.2		1.04e-16		          1.04e-16		    9.71e-17
0.3		2.18e-15			7.91e-16		   8.33e-17
0.4		7.04e-14			2.39e-15		   3.33e-16
0.5		1.02e-12			2.29e-14	             0.00e+00
____________________________________________________________
[image: ]

Figure 5. Comparison between exact, ADM and ADMD for 
4. Conclusion 
In this paper, the ADM and ADMD methods for solving second order linear and nonlinear initial value problems is presented. The numerical efficiency of the methods ADM and ADMD is tested by considering five examples. The result shows that the ADMD is very effective and accurate than ADM. The accuracy of the ADMD can be improved by taking small step size or by adding more terms of the series solution.
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